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A NEW METHOD FOR DESIGNING SHOCK-FREE TRANSONIC CONFIGURATIONS

H. Sobieczky®, N. J. Yu**, K-Y. Fung , and A. R. Seebass =

University of Arizona
Tucson, Arizona 85721

Abstract

A new method for the design of shock-free supercritical airfoils,
wings, and three-dimensional configurations is described. Results illus-
trating this procedure in two and three dimensions are givem. They
include modifications to part of the upper surface of an NACA 644410 air-
foil that will maintain shock-free flow over a range of Mach numbers for
a fixed 1lift coefficient, and the modifications required on part of the
upper surface of a swept wing with an NACA 644410 root sectior to achieve
shock-free flow. While the results are given for inviscid flow, the same
procedures can be employed iteratively with a boundary layer calculatiom
in order to achieve shock-free viscous designs. With a shock-free pressure
field the boundary layer calculation will be reliable and not complicated

by the difficulties of shock-wave boundary-layer interactionm.
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INTRODUCTION

Well-known requirements for increased efficiency, and in the case of
aircraft, productivity, have forced the operating conditions of compres-
sors, turbines, propellers, wing sections, and aircraft into the tranmsonic
regime. Unfortunately, once local regioms of supersonic flow occur, shock
waves are likely with the attendant wave drag, and boundary layer separa-
tion, losses. In the mid-fifties, Hortw.:zl proved that shock-free, two-
dimensional, irrotational, near somic flows are mathematically isoclated.

In other words, any small changes in the flow or boundary conditions that
provide a shock-free flow will lead to the formation of a shock wave. Thus
Morawetz's theorem stated that the shock-free inviscid flow solutiomns, if
and when they existed, were isolated by neighboring solutions that contain
shock waves. Recently this result has been extended to three dimensicns

by Cook.2 Fortunately, it was recognized that such flows would have prac-
tical significance if, as seemed likely, the shock waves that occurred in
neighboring flows were very weak. Wind tunnel reseazch by R. T. Whi:conb3
at the NASA Langley Research Center and by H. H. Penrcty‘ at the Natiomal
Physical Laboratory (U.K.) led to the development of practical "shock-free"
airfoil sections. Subsequent analytical studies by Garabedian and Korn,s
Nieuwland,6 Boorstocl.7 and Sobioczkya established theoretical design
procedures for two-dimensional inviscid flows. More recently, the develop-
ment of sophisticated numerical codes for the analysis of tramsonic flow
fields has led to the design of both airfoils and wings by aumerical
opcimiza:ian.9’10 The practical success of the above efforts, as documented
by the recent NASA Conference on Advanced Technology Rcs.arch.ll has been

substantial. Further progress, as reported here, seems likely. The senior

author recognized that the procedure he was using in the hodograph plane




ST T

T T Y VI ——— " ——

implied an analogous procedure in the physical plane, and further, that
this procedura did not seem to be restricted to two-dimensional flm.12'13
This paper reports the success we have had o date in using this idea to
provide shock-free designs in two and three dimensions.

The design procedure invoked here is, in principle, a simple omne.
While there is no guarantee that a shock-free flow will necessarily result
from the procedure, our experience in two-dimensions has been that if the
hedograph method will work for specified flow and airfoil parameters, then
the procedure outlined here will work, toa. Also, it provides neighboring
shock-free airfoil shapes for fixed lift coefficient with varying Mach

aumbers and varying lift coefficient for fixed Mach numbers, as well as

providing a multiplicity of closely related shapes that are shock-free at

fixed lift coefficient and Mach number. This wealth of shock-free
two-dimensional designs 1is of no great surprise; it is, then, not surpris-
ing that they are found with minimal computational effort. Two-dimensiomal
inviscid flow potential airfoil designs require less than a minute of
CYBER 175 CPU time and only a few seconds of CDC 7600 CPU tima.

For three-dimensional flows our results are less extensive. Also,
while it is clear that the procedure we use rests on a sound mathematical
foundation in two dimensions, this may not be the case in three dimensions.
Indeed, for three-dimensiocnal (that is non-planar and non-axisymmetric)
flows we are probably solving an ill-posed boundary value problem. The
fact that shock-free flows are obtained in the cases studied here are a
consequence of the pseudo-analytic character of the initial data and the
particular numerical technique used to calculate the flow in the hyperbolic

region.*

*The authors are indebted to Professor A. Jameson of the Courant Institute
for alerting them to this difficulty.
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DESIGN PROCEDURE

We have demonstrated the ability to modify three-dimensional wings

so that, within the context of the numerical algorithm used, shock-free
flows are obtained. We have not yet demonstrated an analogous wealth of
shock-free flows in the three-dimensional case, but see no reason to
believe that this situation is different there. The practical consequences

of this wealth should prove to be of interest to the aircraft :Lndustry-l4

The procedure we use to f£ind shock-free designs assumes that a reliable
numerical code is available for computing the flow past a given configurationm,
such as that sketched in Figure 1. Such codes are available for two- and
three-dimensional inviscid flows. When they are coupled with a reliable
boundary layer code, the design procedure outlined here can be used to
calculate shock-free viscous flow designs. While this would require some |
modest iteration, it is certainly possible, both in practice and in prin- |
ciple. With the existence of a reliable analysis algorithm presumed, we
modify this algorithm so that once the flow becomes hyperbolic we alter the
basic equations so that they revert to elliptic behavior. This may be done )
in a number of ways, but it should be done in a way that it conserves new, ‘
but fictitious, '"mass" and "momentum" fluxes to a satisfactory degree of

accuracy. We may, for example, change the density's dependence from the

usual one to one that returns the equations to elliptic form. We might
suppose, for the purpose of illustratiom, that once the equations become Ei
parabolic, i.e., sonic, on some surface then at higher velocities the 1

density will be maintained at its sonic value, giving elliptic equatioms.

We use a numerical algorithm to compute this fictitious flow past a con-

figuration of interest, chosen perhaps on the basis of previous design




experience. Because the equations are elliptic this will result {n a
discretized, pseudo-analytic, description of the velocity, density, and
pressure fields on the embedded parabolic surfaces, and this description
will be consistent with the correct governing equations. This initial
data on the parabolic surfaces is then used to calculate the correct flow
field inside such surfaces. This new flow field may, Oor may not, contain
shock waves. This depends on the choice of the fictitious equations, or
perhaps becter, fictitious gas, used inside the parabolic surfaces. This
new flow will define a stream surface that is tangent to, and has the same
curvature as, the stream surface at the intersection of the sonic surface
and the original body. Inside this surface a new body shape is defined by
the stream surface of the new, but now real, flow.

Here, of course, we must also address the question of whether or not
this initial value problem is well posed. In two dimensions there is no
difficulty because either of the spatial coordinates may be designated as
the time-like variable. This is not the case in three dimensions where
only the spatial coordinate aligned with the flow is time-like. Because
shock-free flows are reversible, the domairs of dependence and influence
may be interchanged. But neither the normal (nor the binormal) to the
stream direction can be considered time-like in the three-dimensional
initial value problem. Thus, it may be ill-posed because data are given
on surfaces that are not in the usual domain of dependence. If so, any
computational algorithm will be unstable for the three-dimensional problem.
Further, while such computations can be stabilized by artificial means, the
results must be considered suspect until they are verified by an independent
computation. It is this fact that has made us stress that a reliable

analysis algorithm should be the basis for the design computations. For
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two-dimensional (planar and axisymmetric) designs this difficulty does not
occur because the lateral coordinate can be considered to be the time-like
directiom. A simplistic analysis of model problems indicates that varia-
tions in the spanwise direction that are om a scale that is small compared
to the nominal axial (flow direction) distance may amplify; thus the
success of the numerical algorithm here may depend upon its natural filter-
ing of such disturbances. This is not the first time ill-posed problems
have been solved to obtain results of engineering interest; see, for
example, Ref. 15, pp. 448-472.

Fictitious Gas

As mentioned above, modifications are made to the basic equatioms to
retain their elliptic behavior once the flow has accelerated to sonic speed
and a parabolic surface, with the needed initial data, has been generated.
The possible modificacions are manifold. We limit our discussion to those
we have used to obtain the results reported here.

16,17

For two-dimensional flows we have used Jameson's circle-plane

algorithm for the full potential equation. Thus, in the analysis mode, we

are solving

(b1, + (o0}, = 0
with

plog = [1 + Uz—iuf(l - ¢: - ¢:)]1’Y'1

where ¢ 1is the velocity potential and p the demsity. If we limic our

consideration to fictitious gases for which the density is a function of

(1a)

(1b)




the square of the velocity, viz., p = p(qz), where q2 = U2[¢: 4= 4)3].

then gas laws of the form
plo, = (a,/q)P, P<l, for q»a, (1e)

will insure elliptic behavior; P = 1 gives parabolic behavior and the
fictitious and real gases have the same value of (do/dq),. An alternative
choica, and the one we have used most extensively here, is P = 0; in
this case Equation (la) becomes Laplace's equation. When the flow would
noraally be hyperbolic we now solve Equation (la) with the demsity-
velocity relationship of Equation (lc). A fictitious mass flow, which
matches the real mass flux at the sonic surface, is thereby conserved and
the velocity field remains irrotatiomal.
For three-dimensional flows we have used the Ballhaus, Bailey, Frick 4

19

algorithm, a8 as implemented by Mason et al. This is a small perturba-

tion calculation and we adopt the classical conservative formulation here.
Thus we solve, in an equivalent form, the system
L - &
2(Y+l){u}x+vy+wz 0
uy -y 0 (2)

u ‘\7‘.0,

where the velocity vector is g = a [(1 + u)i + vi + wk].

A simple modification (2) is to replace {uz}x by --sgn(u){uz}x

for all u. This system is elliptic except on the somnic surface where




u =0. We may think of the first of Equations (2) as being the consequence

of the small perturbation expansion for the demsity, viz.,

L-]_._u-lf‘_luz' (3)
Pa z

whereas the fictitious equation, with u replaced by -Iu] for' o > 0,

results from

1 e B R S (4)

{ 9* 2 ]
N

this fictitious gas has the same value for (do/du), as the real gas, 1

Equation (3). For three-dimensional design studies, then, we solve Equa-

tions (2) with {uz}x replaced by -sgn(u){uz}x; this corresponds to

using the densities given by Equations (3) and (4) for u< Q0 and u> 0

| S——

respectively.

Calculation of the Hyperbolic Flow Field
As described above, we calculate the flow past a body using the correct

f S——

equations when the flow is subsonic and a modified, incorrect, set of equa- L

tions when the flow is supersonic. This calculation serves to define somic

i aid,

surfaces on which the flow field calculation is switched from the correct

equations to the modified ones. Outside this surface, presuming the _
! trailing edge of the wing is subsonic, the solution satisfies the correct

equations and the potential at infinity has the correct value for the

circulation. If infinity in the physical plane is not mapped to a finite

part of the computational plane, then there is, in principle, a need to

correct the doublet and nonlinear contributions; in practice, these con- ]




tributions are small and changes in them negligible. Thus the flow in the
elliptic, subsonic, domains is fixed and known, as is the initial data we
need on the parabolic surface.

For two-dimensional flows the calculation of the correct hyp§rbolic
behavior is carried out using the method of characteristics. This is done
in a hodograph-like working plane in which the characteristics are
orthogonal straight lines. If we take £ = 8§ +v and n = § - v where
8 41s the flow deflection angle and v the Prandtl-Meyer turning angle,

then the velocity potential and stream function satisfy

or equivalently,

Q! - :K.l
- £ ,n=const

where the :* signs refer to £,n = const., respectively. Here
RG) = Klv(a)] = (|43 - 13 %0/ (.

Values for the velocity potential on the parabolic line, z = z*(x), and
the shape of this line are used along with the usual relations between the
spatial coordinates and ¢ and ¢ ¢to find ¢ on the sonic line. This
initial data is then integrated u-'ng Equations (5) to determine the locus
¥(x,z) = 0 which passes through the intersection of the sonic line with

the body surface. The values of 2z for which ¥(x,z2) = 0 determine the

(s)
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new body shape. This shape will have the same Qlopc, and at least theo-
retically, the same curvature, as the original body at the sonic points.
This follows from the observation that flow quantities are not changed at
the sonic line; thus the streamwise momentum and normal pressure gradient
are unchanged. Consequently the local flow curvature must be the same.

For three-dimensional flows the calculation of the hyperbolic flow
field is carried out by a procedure that marches inward from the sonic
surface by successive surfaces of constant density (isopycnics) for the
full potential equation, or constant axial flow speed, u, for the small
perturbation equation. We limit our discussion to the small perturbation
equations, as all the results reported here derive from them. Preliminary
results using the full potential equation have been obtained by one of the
authors (N. J. Yu).

We may either write the Equations (2) in the appropriately scaled
form or work with them directly, which we will do here.

We are given an isotach surface 2z*(x,y), as shown in Figure 2, on
which we know u = u* = const., w = w*(x,y), and v = v*(x,y). We use

the data on this surface, and the surface shape, to calculate
’ w;v W;, V;, V;. (6)
Because this data satisfies Equations (2) we can verify that
VR = zhgk - zkgk
Xy

x y X

which can be used, if needed, to check the consistency of the initial data.

The values given in Equation (6) can now be used to calculate the z

——

A




derivatives of u, w, v on 2z*(x,y), where u(x,y,z*) = const., by

using

u_ = [ZRyk - Zkyk o yr]/J
z Y X Xy x

W ((y + l)u*z;v; - z;v; + v;]/J
b ((y + l)u*z:v; - w'; - z;v;]/J
where J, the Jacobian, 23 (u,v,w)/3(x,y,z), 1is

( ) < y .

When the Jacobian, which is initially negative, vanishes we can no longer
compute the 2z derivatives; this corresponds to the subsequent formation
of multi-valued solutions, i.a., limit surfaces. If J = 0 occurs before

the calculations produce a suitable stream surface defined by w(x,y,0),

v(x,y,0), then they must be rejected.

-
.. PO

With the first of Equations (7) inverted to give (dz/du),, we take a

This new shape, along with the mean value of u between the twc surfaces
and the second and third of Equations (7), provides the new values,
w*(x,y) + aw*(x,y), v*(x,y) + Av*(x,y), of w* and v* on the next

F | % isotach. These values and the shape of the subsequent isotach are then

| converted to continuous functions by one-dimensional cubic splines in the
X and y coordinates. This "onion-peel''-like process is them continued
until 2z = 0, unless a limit surface intervemes. In the latter event the
solution must be rejected. A more detailed discussion of this procedure

is given in Ref. 20.

1
i
1

(7)

set increment in u, Au, ¢to form a new isotach surface z*(x,y) + Az*(x,y).

- d T ——————— - VN R TP ——



TWO-DIMENSIONAL RESULTS

We have explored, rather extensively, some of the modifications that
can be made to an existing airfoil, namely an NACA 64A410 airfoil, to
obtain shock-free flow. We will call this the baseline airfoil, as the
airfoil shapes we generate are identical with this airfoil over that por-
tion wetted by subsonic flow; we need only modify the airfoil over a
limited portion of its upper surface to obtain shock-free flows. Further,
this modification is not unique for fixed £light conditiomns; rather, if
one such shape exists, there will be an infinite family of modifications
of the baseline airfoil that will produce shock-free flow.

With a baseline airfoil selected, here mainly for illustrative pur-
poses, we then pick a set of flight conditions for which we wish to find a
modification of the airfoil shape that will result ian shock-free flow. We
choose M_ = 0.72 and a, the angle of fttack, 0.4 DEG. At these condi-
tions inviscid flow calculations for the NACA 64A410 baseline airfoil give
a CL of 0.78 and a CD of 0.0064. The design procedure discussed
above results in an airfoil that {s 9.3% cthick and has a lift coefficient
of 0.703. The original and the design pressure coefficient, somnic lines,
and body shapes are compared in Figure 3a; these results, and all other
"analysis'' results were computed using the numerical algorithm of Ref. 16.
Figure 3b compares the pressure coefficients and sonic lines determined by
the design procedure with those computed for the design airfoil shapae.

With this shock-free design established at M = 0.72 and with CL =
0.70, we now wish to determine the families of shapes that provide shock-
free flow for fixed 1lift coefficient as the Mach aumber varies, and fixed

Mach number as the lift coefficient varies. This we have dome with P = 0,
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that is, with a constant density fictitious gas (at the critical value).

We have then explored other shapes that will produce the same lift coeffi-
cient, 0.70, at a fixed Mach number, for chree different Mach numbers,

by taking P to be <-0.5, 0.5, and 1.0. Also, for P = 0 we have
determined the maximum Mach number for which the design procedure will
produce a shock-free airfoil, as a function of lift coefficient. This
Mach number is nearly a linear function of lift coefficient at larger lifc
coefficients. The slope of this variation is consistent with that given by

Bocxstocl.ZI Preliminary studies also indicate that for a fixed lifc

R UTRT

coefficient of 0.6=0.7, an 0.1% increase in the maximum Mach aoumber
requires about an 0.2% reduction in the thickness for shock-free flow,
[ when the nominal thickness is about 10%. This result is less optimistic
! than the envelope of the hodograph designs given by Bocrs:o.l,ZI who found

that only an 0.1Z reduction was required. In our study the generic

family of the airfoil is invariant; we have not yet examined the modifica-
tions required when the baseline airfoil is near the envelope of hodograph

designs. Positive values of P provide less airfoil thickness reductionm,

e —

as the fictitious and real gas densities are more nearly the same. The

-
.

E range of our airfoil studies is depicted in Figure 4, with shock-free
airfoils being determined for the points indicated. Also shown in Figure
4 is the maximm Mach number for which a design was found as a function of
1ift coefficient for P = Q.
The accuracy of the design procedure was studied at a number of design
t points by comparing the design's pressure distribution and sonic line shape
' with those obtained using the ummodified numerical algorithm to analyze the
design airfoil shape. Typical results are shown in Figure 5. The sonic

line shape and initial data on the sonic line are determined in the circle-
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plane; they then are mapped back to the physical plame. The method of
characteristics in the hodograph variables is used to compute the design
pressure coefficient corresponding to the calculated airfoil surface shape.
The agreement, as shown, is excellent. For designs that approach the Mach
number at which a limit line first penetrates the surface special care must
be taken with the analysis code in order to obtain a converged solution.
These designs have very rapid expansions immediately following the sonic
line. Indeed, as Bocrsto¢121 has noted, the analysis code used with an
optimization scheme will not produce designs of this character.

The shock-free airfoil shapes that are obtained for fixed CL and P,
fixed M, and P, and fixed M_ anod CL at various P's, are shown in
Figures 6~8. One can overlay the results for fixed CL and find quite
similar airfoil shapes that are shock-free over a range of Mach numbers.
Because modifications to the baseline airfoil are required omly over a
limited portion of the upper surface, and a family of specified changes in
the airfoil curvature is known for each set of flight conditions, a closely
related family of shock-free airfoil shapes can be generated. Thus the
minor modifications, to a limited portion of a wing surface, needed to

produce shock-free flow over a practical range of flight conditions can

easily be determined.

THREE-D IMENSIONAL RESULTS

Our first design results using the method described above were for two-
dimensional, small perturbation flow past a parabolic arc airfoil. Conse-
quently, we initiated our three-dimensional studies with a rectangular,
unswept wing with an aspect ratio of six and a parabolic arc airfoil. We

utilized the small perturbation approximation, Equations (2), and a parabolic
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thickness distribution; the airfoil was taken to be 6% thick at the center
plane. The flow was calculated using the algorithm of Ref. 19, modified to
return the equations to elliptic behavior as described earlier. The initial
d#:a on the embedded sonic surface was then used to compute the correct flow
in the supersonic domain using the "onion peel' algorithm of Ref. 20. This
defines new wing surface slopes. The flow past this shock-free design was
then analyzed, using the unmodified numerical algorithm. Figure 9 compares
the pressure distributions on the original and design wing, at various
lateral positions, for M_ = 0.87. Also shown are the cross sections of the
sonic surface at the same lateral stations. The only essential differences
in the pressure occur in the supersonic domain, which is consistent with the
design process. The modifications made to the wing slope, shown in Figure
10 for several lateral stations, have eliminated the shock wave.

A subsequent, more realistic, calculation was made for the placform
sketched in Figure 11. The wing section chosen was an NACA 644410 pro-
file at the center section and an elliptic thickness distribution. The
leading edge sweep was taken to be 30 DEG, the trailing edge 15 DEG and
the span to chord ratio five. The sonic surface is also depicted in Figure
11. Figure 12 compares the pressure coefficients on the upper surface »f
the original wing and the wing designed to be shock free. While the reduc-
tion in drag for this wing is small compared to the induced drag, it is
clear that the wing modifications have essentially eliminated the shock
waves, and, consequently, the wave drag. More importantly, shock wave
induced boundary layer separation is avoided.

We pause at this point to stress that the above comparison is obtained
by computing the flow past the original wing and the design wing, using the

same numarical algoritim. The process that leads to the new wing shape

g
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also provides the pressure on the wing. Because this pressure, and the new
design shape, result from a problem that is presumably ill posed, the
results were considered suspect until verified by the original numerical
algorithm. Our experience with the calculation of the three~dimensional
supersonic flow field is limited. But this limited experience seems to
confirm that reducing the isotach or lateral mesh size to small values gives
results that are indicative of an instability. At this juncture we can only
say that results of engineering interest are obtained in three-dimensional
flows, no doubt because the flows of interest are frequently those whose

behavior is generally smooth and locally amalytic.

CONCLUSION

A novel and simple procedure for determining modifications that will
make a baseline configuration shock-free for supercritical flight conditions

has been delineated. For two-dimensional, inviscid flows, shock-free de-

-signs are obtained in seconds on a CYBER 175. Families of airfoils that are

shock-free at fixed, as well as varying, flight conditions are found. The
same procedure has been applied to three-dimensional wings, resulting in
wing modifications that make the wings shock-free when the flow is analyzed
with the numerical algorithm that was modified to become a design tool. It
can also be applied to the design of shock-free cascades. A unique feature
of the procedure is that any code that is effective in computing the flow
field may be modified, in various ways, to be a design algorithm if it is
coupled with a method for calculating the solution in the supersonic
domains for given data on the sonic surfaces. A straightforward marching

technique for such computations is described for three-dimensional flows;

in two dimensions either the marching procedure or the method of
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characteristics may be used for the supersonic domain. The algoritim for
the supersonic domain serves to define the modifications needed in the
configuration to achieve shock-free flow; these modifications will be
limited to that portion of the design shape that are wetted by supersonic

flow.
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Sketch of shock-free flow past a lifting wing depicting the
sonic surface obtained by introducing fictitious behavior
inside this surface that results in elliptic equations. The
correct flow in this supersonic domain is subsequently calcu-
lated using the initial data on the sonic surface. This
calculation provides the wing geometry modifications needed
to obtain shock-free flow.

Sketch of two neighboring isotach surfaces used in the calcu-
lation of the supersonic domain for Equatioms (2).

Comparison of the pressure coefficients and sonic lines for
the baseline NACA 64A410 and the shock-free airfoil obtained
from it by the direct design procedure.

Parameter space explored for the shock-free airfoils that can
be obtained when the baseline configuration is an NACA 64A410
airfoil.

Comparison of the pressure coefficient and the sonic line
obtained by the design calculation that modifies the airfoil
shape with those obtained by computing the flow past the
modified airfoil with the numerical algorithm of Ref. 16.

Shock-free airfoil shapes for fixed lift coefficient and vary-
ing Mach oumber. The fictitious gas has a constant density in
the supersonic domain. The vertical scale is magnified five
times and the baseline airfoil is an NACA 64A410.

Shock-free airfoil shapes for fixed Mach number and varying
1lift coefficient. The fictitious gas has a constant density in
the supersonic domain. The vertical scale is magnified five
times and the baseline airfoil is an NACA 644410.

Shock-free airfoils obtained at the same flight conditioms by
varying the exponent of Equation (lc) and thus changing the
density's dependence on flow speed. The vertical scale is mag-
nified five times and the baseline airfoil is an NACA 64A410.

Sonic surface for the shock-free rectangular wing obtained by
modifying a wing with a parabolic arc airfoil sectiom, and the
pressure coefficients on the original and modified wing as
calculated by the numerical algorithm of Ref. 19. The thickness
distribution of the baseline wing is parabolic.

Changes required in the surface slope at various lateral sta-
tions to provide shock-free flow over the rectangular wing of

Figure 9.

Sonic surface on the shock-free swept wing used that corresponds
to the design pressure coefficients shown in Figure 12.




Figure 12. Comparison of the computed pressure coefficient on a swept wing,
with an NACA 64A410 center section profile and an elliptic
thickness distribution, with the pressure coeifficient obtained
by computing the flow past the modified wing using the same
numerical algorithm. The leading edge sweep is 30 DEG and the
trailing edge sweep 15 DEG.
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